Видеокарта с одним вентилятором как называется

Как выбрать видеокарту

Видеокарты бывают интегрированными и дискретными. Интегрированные уже встроены в центральный процессор или материнскую плату. Они решают самые простые задачи: игры на телефоне, просмотр видео. Не подходят для требовательных игр и работы с графикой — для таких задач понадобятся дискретные видеокарты, которые отдельно подключают к компьютеру.

Игровые

Игровые

Для игр уровня Dota, Counter-Strike или Minecraft достаточно видеокарты в пределах 15 тысяч рублей. Для игр AAA-класса уже стоит обратить внимание на частоту памяти и количество ядер — чем они выше, тем быстрее и качественнее будут рассчитываться эффекты в игре.

Профессиональные

Профессиональные

Предназначены для работы с графикой. Для них важен объем памяти и пропускная способность шины. Они часто дороже игровых, но в играх могут быть хуже, так как заточены под другие задачи: качество изображения, рендер, работу с ArchiCAD, AutoCAD, 3ds Max. Для машинного обучения иногда эффективнее купить несколько игровых видеокарт по цене одной профессиональной.

nVidia или AMD?

В продаже сегодня можно встретить видеокарты, выпущенные различными компаниями, среди которых Asus, Gigabyte, MSI и многие другие. Но эти фирмы закупают графические процессоры (GPU), то есть тот компонент, который можно назвать «сердцем» видеокарты, у двух производителей: AMD и nVidia. Каждый из них предлагает решения, имеющие свои достоинства, которые определяются их конструктивными особенностями.

Размеры видеокарты

Большие

Большие

Высокая цена оправдана повышенной производительностью

Средние

Средние

Средняя производительность при не высокой цене

Маленькие

Маленькие

Бюджетный уровень с невысокой производительностью

Прежде чем покупать графический ускоритель, необходимо понять, сможете ли вы его установить на своей материнской плате, не перекроет ли он доступ к какому-либо слоту и поместится ли она по длине в корпус вашего ПК. Обязательно обратите внимание на параметр «Максимальная длина видеокарты», который указывается в характеристиках практически всех компьютерных корпусов.

Производительность

На производительность видеокарты влияет множество параметров, поэтому при выборе проще ориентироваться на то, к какой серии компания-производитель относит тот или иной графический адаптер.

nVidia сейчас выпускает бюджетную серию GTX и «продвинутую» линейку RTX.

Внутри каждой из линеек можно смотреть на цифровые индексы: чем индекс больше, тем видеокарта мощнее.

У AMD все несколько сложнее. Она сейчас выпускает несколько серий графических процессоров, которые не выстраиваются в какую-либо четкую иерархию.

Самая последняя обновленная линейка от этого производителя — RX c «пятитысячными» индексами, например, AMD Radeon 5500 и AMD Radeon 5700

Бюджетные

Ее возможностей достаточно, чтобы воспроизводить графикку с разрешением Full HD (1920×1080 пикселей) со средними и в некоторых случаях высокими настройками.

Средние

Решения среднего класса, справляющиеся с обработкой графики с разрешением Full HD или 2K, — это, в частности.

Продвинутые

Для топового геймерского компьютера, который должен воспроизводить графику с максимальными настройками в разрешении 4K, подойдут.

Видеопамять

Видеопамять графического ускорителя — это внутренняя оперативная память, которая отводится для хранения данных, использующихся для формирования изображения на экране компьютера. В принципе, чем больше ее объем, тем лучше, но производительность во многом зависит и от других критериев. Поэтому рассматривать характеристики нужно в комплексе, не ограничиваясь только объемом видеопамяти.

Чтобы найти компромисс между объемом видеопамяти и ценой, можно ориентироваться на следующие параметры:

Видеокарта начального уровня, многие игры на компьютере, в котором она установлена, вообще не запустятся или «пойдут» с низкими настройками графики

Решение для компьютера среднего уровня мощности, подходит для работы с профессиональными графическими редакторами и запуска игр в жанре «стратегия»

Для топового геймерского компьютера, который должен воспроизводить графикус максимальными настройками в разрешении 4K, подойдут

8 Гб и выше

Для наиболее требовательных игр с картинкой, которая воспроизводится с разрешением 4K (3840 х 2160 пикселей), для игр с использованием устройств виртуальной реальности, а также для решения профессиональных задач, связанных с дизайном и видеомонтажом

Разрядность шины памяти

Это настолько важный параметр, что о нем следует сказать отдельно. Шина памяти представляет собой канал между графическим процессором и памятью, и чем он шире (чем больше разрядность), тем больше информации способна видеокарта обработать за единицу времени. Но, так как видеокарта состоит из нескольких компонентов, низкую разрядность можно компенсировать, например, за счет более быстрой и современной видеопамяти.

Принято считать, что игровому компьютеру необходима разрядностьне менее 128 бит. Лучше, если этот показатель будет выше.

Выберите в каталоге

Питание

Разъёмы
6 pin, 8 pin, 6+8 pin

Бюджетные видеокарты и решения низшего среднего класса обходятся без дополнительного питания. Однако многие графические адаптеры со средней и высокой производительностью потребляют так много энергии, что без дополнительного питания им не обойтись. Для этого они комплектуются разъемами различных типов.

Высокое энергопотребление видеокарты означает, что к блоку питания компьютера тоже предъявляются особые требования. Обычно в технических характеристиках графического адаптера указываются рекомендации относительно мощности БП. Ориентируйтесь на эти показатели.

Рекомендуем брать блок питания мощностью не ниже 700 ватт.

Выберите в каталоге

Охлаждение

Видеокарта при работе под интенсивной нагрузкой не только потребляет много энергии, но и серьезно нагревается. Перегрев может привести к снижению производительности, а в худшем случае к выходу графического адаптера из строя. Чтобы этого избежать, производители используют системы охлаждения. Конечно, в мощном игровом компьютере или ПК, предназначенном для профессиональной работы с графикой и видео, обычно есть кулеры или система водяного охлаждения. Однако видеокарте требуется и собственная система защиты от перегрева. Охлаждение бывает:

Пассивное

Пассивное

Пассивная система охлаждения представляет собой радиатор, работающий по принципу естественного тепловыделения. Проще говоря, металлическая пластина отводит тепло, нагревая окружающий воздух.

Ее основное преимущество — бесшумность, однако эффективность таких систем оставляет желать лучшего.

Активное

Активное

Активная система охлаждения обычно является гибридной: она состоит из радиатора, тепловых трубок и одного или нескольких вентиляторов.

КПД такой системы значительно выше по сравнению с пассивными, однако она потребляет довольно много энергии и при работе под большой нагрузкой может шуметь.

Жидкостное (водяное) активное охлаждение

Жидкостное (водяное) активное охлаждение

В некоторых видеокартах используется не воздушное, а жидкостное (водяное) активное охлаждение. Такие системы обладают высокой эффективностью, но стоят довольно дорого и используются обычно в топовых игровых системах. Они тоже могут шуметь, только звук работающего вентилятора заменяется на звук работающей водяной помпы.

Вывод изображения на экран

Для вывода изображения на экран видеокарте нужен разъем, посредством которого она подключается к монитору.

Основные типы видеовыходов

D-Sub (VGA)

D-Sub (VGA)

На современных видеокартах среднегои высшего классов встречаются сравнительно редко

DVI

Позволяет подключать многие старые и современные мониторы

Display Port, Mini Display Port

Display Port, Mini Display Port

Обеспечивают совместимость со многими моделями современных мониторов

HDMI

позволяет не только транслировать видео с разрешением 4K, но и по одному кабелю передавать видео- и аудиосигнал, что крайне важно для тех, кто обходится без внешней аудиосистемы и пользуется встроенными в монитор динамиками

Также вам понадобится возможность подключения по HDMI, если вы собираетесь использовать шлем виртуальной реальности

Шлем виртуальной реальности

Выберите в каталоге

На рынке сегодня представлено множество видеокарт, различающихся такими характеристиками, как объем и тип видеопамяти, размеры, тип системы охлаждения и так далее. При этом компании-производители постоянно предлагают новое решение, и то, что вчера казалось наиболее современным, сегодня становится стандартным, а завтра его уже вытесняют более «продвинутые» модели.

Однако, если вдумчиво подойти к процессу выбора, учесть информацию, которую мы привели в этой статье, и советы, которые мы дали, можно выбрать видеокарту, которая не только оптимально подойдет для решения стоящих перед вами задач, но и не устареет в течение нескольких лет.

На сайте интернет-магазина СИТИЛИНК предусмотрена система фильтров, позволяющая быстро провести поискв режиме онлайн и найти видеокарту, которая оптимально соответствует вашим потребностям.

Источник



Как сделать эффективное охлаждение для видеокарты пк?<\/h1>

Охлаждение — важный фактор, который следует учитывать при покупке новой видеокарты. Это связано с тем, что для видеокарт доступны разные типы кулеров, и у каждого из них есть свои плюсы и минусы. Графические карты выполняют много тяжелой работы по обработке графики, и при этом она может сильно нагреваться.

Поэтому для охлаждения, видеокарты оснащены кулерами, которые отводят тепло от графического процессора. Они могут быть от очень простых до очень сложных по конструкции в зависимости от размера карты и вычислительной мощности карты, которой она обладает. Помимо графического процессора, есть и другие важные компоненты, которые сильно нагреваются и также нуждаются в охлаждении. Эти компоненты включают VRAM или видеопамять и модуль VRM или регулятора напряжения.

Читайте также:  Завод вентиляторов г воронеж

Видеопамять и VRM также могут быть очень полезны, особенно в видеокартах среднего и высокого класса, и их также необходимо охладить, иначе ваша карта может выйти из строя, зависнуть в середине, и вам, возможно, придется перезагрузить компьютер. В этом посте я расскажу вам о различных типах кулеров для видеокарт, а также перечислю их преимущества и недостатки.

Различные типы решений для охлаждения видеокарт

Вот различные типы охлаждающих решений или технологий, используемых для поддержания температуры видеокарты на безопасном уровне.

Пассивное охлаждение

Пассивное охлаждение — это самый простой и основной тип охлаждения, используемый в видеокартах. При таком охлаждении только радиатор используется для охлаждения графического процессора и других компонентов, включая видеопамять и VRM. Это называется пассивным охлаждением, поскольку в процессе охлаждения нет активных компонентов. Его еще называют безвентиляторным охлаждением, и он работает совершенно бесшумно.

Пассивное охлаждение обычно используется для низкопрофильных бюджетных видеокарт и карт начального уровня, потому что графический процессор этих видеокарт не очень мощный и не выделяет столько тепла. Вы также можете увидеть некоторые устройств среднего уровня с пассивным охлаждением, имеющие более крупные радиаторы и медные тепловые трубки. Но их очень мало и среди геймеров они не пользуются популярностью. В основном они используются при создании бесшумных ПК или HTPC, где шум вызывает небольшое беспокойство.

Основным недостатком пассивного охлаждения является то, что оно имеет ограниченную производительность, и с его помощью очень сложно охлаждать высокопроизводительные и более быстрые видеокарты. Кроме того, никогда не думайте о разгоне видеокарты с пассивным охлаждением, потому что вы можете в конечном итоге поджарить ее или навсегда повредить.

  • Полностью бесшумная работа
  • Не требует обслуживания
  • Ограниченная эффективность охлаждения
  • Не рекомендуется для просмотра
  • Может быть громоздким в некоторых картах

Активное охлаждение

Это наиболее широко используемое решение для охлаждения, используемое для большинства видеокарт. При активном охлаждении для охлаждения видеокарты используется вентилятор с радиатором, и эта комбинация известна как HSF или вентилятор радиатора. Этот тип охлаждения используется на многих картах, начиная от бюджетных, средних и высокопроизводительных. Количество вентиляторов на видеокартах зависит от производителя и самой карты.

Некоторые видеокарты поставляются с одним вентилятором, некоторые — с двумя вентиляторами, а некоторые — с тройными вентиляторами. В целом, чем больше вентиляторов, тем лучше общее охлаждение и возможность разгона. Скорость или число оборотов вентилятора автоматически контролируется видеокартой.

Если устройство находится в режиме ожидания или имеет более низкую температуру, скорость вращения вентилятора будет ниже, а во время тяжелой работы или игр скорость вращения вентилятора повышается до максимального значения, что обеспечивает максимальную производительность. Вы также можете контролировать скорость вращения вентилятора вручную, используя хорошее программное обеспечение для разгона. Кроме того, с помощью этих инструментов вы можете настроить другие параметры видеокарты.

Основным недостатком активного охлаждения является то, что иногда оно может быть очень шумным, когда вентиляторы вращаются на более высоких оборотах. Возможно, это не проблема для геймеров, но для тех, кто хочет собрать бесшумный ПК — не подойдет.

  • Лучшее охлаждение
  • Подходит для разгона
  • Может быть шумно
  • Может потребоваться обслуживание
  • Вероятность отказа вентилятора

Водяное/жидкостное охлаждение

Это лучший способ охлаждения графического процессора. При водяном охлаждении GPU видеокарты охлаждается блоком водяного охлаждения, который состоит из радиатора и вентилятора. В этом типе охлаждения вода или жидкость циркулирует по поверхности графического процессора с помощью труб и радиатора, а горячая жидкость, протекающая по трубам, охлаждается вентилятором радиатора. Этот процесс повторяется, и он поддерживает температуру карты намного ниже по сравнению с решениями с активным и пассивным охлаждением.

Остальные компоненты, такие как VRAM и VRM, охлаждаются радиаторами пассивно. Водяное охлаждение стоит дорого и время от времени требует технического обслуживания. Жидкость или воду необходимо доливать или менять через регулярные промежутки времени для их правильного функционирования и обеспечения наилучшей производительности. Водяное охлаждение может быть опасным, потому что если каким-то образом жидкость начнет протекать, это может вызвать повреждение других компонентов ПК.

  • Очень хорошее охлаждение
  • Подходит для разгона
  • Относительно тихий в работе
  • <Дорого
  • Сложно
  • Риск утечки жидкости
  • Требуется обслуживание
  • Требуется больше места в корпусе ПК

На современных видеокартах вы не найдете только устройство водяного охлаждения, потому что оно сопровождается радиатором и вентилятором (HSF) для охлаждения памяти и VRM. Это называется гибридным охлаждением.

Гибридное охлаждение

Гибридное охлаждение — это форма водяного охлаждения, при которой графический процессор охлаждается водяным/жидкостным охладителем, а другие компоненты, такие как видеопамять и VRM, активно охлаждаются с помощью радиатора и блока вентилятора. Этот тип охлаждения очень эффективен и действительно может снизить температуру вашей видеокарты до 20-30 градусов Цельсия или даже больше.

Это, несомненно, лучшее решение для охлаждения вашего графического процессора и других компонентов. Это также отлично подходит для пользователей, которые серьезно занимаются разгоном и любят довести свои видеокарты до более высоких частот.

Гибридное охлаждение = водяное охлаждение (GPU) + HSF (для VRAM и VRM)

Гибридное охлаждение очень дорогое и обычно используется в высокопроизводительных видеокартах, но вы также можете приобрести комплект гибридного охлаждения на вторичном рынке для своей эталонной видеокарты.

  • Лучшая производительность охлаждения
  • Лучшее для разгона
  • Относительно бесшумная работа
  • Требуется обслуживание
  • Нужно больше места в корпусе ПК
  • Риск утечки жидкости
  • Дорого

Водяной блок охлаждения

Это разновидность водяного охлаждения, при которой видеокарта поставляется с настраиваемым водяным блоком, имеющим медную опорную пластину, расположенную по всей печатной плате видеокарты. В этом типе водяного охлаждения все основные компоненты, такие как графический процессор, видеопамять и VRM, охлаждаются водой. Специальная жидкость/вода течет через блок воды и удаляет тепло из медной плите основания. Это лучший тип охлаждения, который можно использовать для охлаждения видеокарты, и он лучше, чем гибридное охлаждение. Можно сказать, что это чисто водяное охлаждение для всех основных компонентов видеокарты. Кроме того, оно намного тише по сравнению с вентиляторным охлаждением.

Этот тип охлаждения поставляется без радиатора, и вы можете подключить любой стандартный радиатор по вашему выбору к охлаждающему устройству с водяным блоком. Охлаждение водяным блоком встречается только на высокопроизводительных видеокартах, таких как GTX 1080. EVGA и Gigabyte — два производителя, которые используют водяное охлаждение в видеокарте GTX 1080.

EVGA называет это Hydro Copper, а Gigabyte — водяным блоком WATERFORCE . MSI также предлагает решение для водяного охлаждения под названием SEA HAWK EK. Для видеокарт Water Block необходимо отдельно установить водяной контур и радиатор для них (Water Cooling Kit).

Итак, водяное охлаждение = водяное охлаждение (GPU + VRAM + VRM)

  • Превосходное охлаждение
  • VRAM и VRM также имеют водяное охлаждение
  • Тише
  • Дорого
  • Довольно сложный
  • Требуется водяная петля
  • Нуждается в ремонте

водяное охлаждение и гибридное охлаждение также являются активным решением для охлаждения, так как в нем задействованы вентилятор и радиатор, работающие от электричества.

Заключение

Здесь я перечислил все типы кулеров для видеокарт с их плюсами и минусами. У каждого кулера есть свои достоинства, недостатки и особенности применения. Если у вас есть какие-либо вопросы относительно них, вы можете спросить меня, оставив комментарий ниже.

Источник

Какое бывает воздушное охлаждение видеокарт, разница?

Если вы покупаете новую видеокарту для своего GR, вы, возможно, видели разные модели с разными описаниями на кулерах, прикрепленных к кулеру — Активная система охлаждения open air или Референсная турбинная система охлаждения. Какое бывает воздушное охлаждение видеокарт, разница? Давайте посмотрим, что означают эти термины для вашего GPU.

Оба устройства выполняют одну и ту же задачу: отвод тепла от центрального процессора на видеокарте с помощью радиатора и вентилятора. Это фундаментальный принцип, используемый почти во всех настольных ПК и большинстве ноутбуков. Распределите тепло от процессора по большой латунной или алюминиевой поверхности. А затем переместите вокруг него прохладный воздух, чтобы избавиться от тепла.

Вентиляторы на вашем ПК делают то же самое. Вентиляторы входа приносят холодный воздух внутрь, и вентиляторы выхода вытесняют горячий воздух который был нагрет различными частями вашего компьютера.

Читайте также:  Вентилятор для ноутбука intel

Открытая активная система охлаждения. Вентиляторы спереди, за ними радиатор.

Какое бывает воздушное охлаждение видеокарт — активная система охлаждения open air — открытый куллер

Для GPU разница заключается в том, как эти вентиляторы на вашей видеокарте избавляются от избыточного тепла. Оба вида используют один или больше вентиляторов на радиаторе, установленном на внешнем самой плате видеокарты и закутанным в пластиковый чехол. Эти вентиляторы принимают в горячий воздух изнутри вашего ПК. Они не вытесняют воздух в него-по крайней мере, не сразу.

Кулер GPU при такой системе принимает воздух извне, распространяет этот горячий воздух по радиатору, а затем вытесняет теплый воздух обратно во внутреннюю часть корпуса. Через отверстия на верхней и нижней части видеокарты. Вот почему это называется «open air». Все потому что нет ничего между радиатором, подключенным к графическому процессору GPU, и воздухом внутри корпуса.

Воздушный поток выглядит примерно так. Синие стрелки показывают прохладный воздух, принесенный в видеокарту вентилятором и красные — горячий воздух, вытесненный из радиатора обратно в корпус ПК.

Кулеры open air расположены спереди, на радиаторе и выгоняют горячий воздух прямо в корпус.

Какое бывает воздушное охлаждение видеокарт -референсная турбинная система охлаждения

Напротив, графические карты с реверсивной системой охлаждения полностью покрыты пластиком. Включая верхнюю и нижнюю части карты. Единственное открытое пространство — это несколько отверстий в монтажной плате видеокарты. Той которая подключается к ПК сзади и удерживает электронные порты. Именно в них вы подключаете свой монитор или телевизор.

С референсной турбинной системой охлаждения, горячий воздух, который был согрет с помощью радиатора GPU, выдувается полностью из задней части корпуса. Это также иногда называют “задним выхлопом” по понятным причинам. Вот как это выглядит:

Типичный реверсивный GPU, выгоняет горячий воздух полностью из корпуса. Обратите внимание, что снаружи теплоотвод не виден.

Так что же лучше?

Это зависит от вашей сборки. Для обычного настольного ПК с большим, вместительным корпусом и несколькими корпусными вентиляторами, открытые кулеры, как правило, работают лучше. Охлаждая GPU в несколько большей степени. Это потому, что у них лучший воздушный поток с меньшим количеством препятствий. Несмотря на то, что система использует теплый воздух, который уже находится внутри корпуса. Этот дополнительный поток будет охлаждать ваш GPU немного лучше.

Но только потому, что открытый кулер GPU лучше охлаждает. Но так же это не значит, что это всегда лучший выбор. Потому что это зависит от воздушного потока, протекающего внутри корпуса ПК. Открытый кулер не будет работать хорошо, если ваш корпус не имеет достаточного воздушного потока.

Если вы используете меньший корпус Mini-ITX с меньшим количеством вентиляторов. Или пользуетесь радиатором водяного охлаждения для впуска или выпуска воздуха. То дополнительное тепло, добавленное внутрь вашего корпуса, также не будет выводиться. Это перегреет ваш GPU, не говоря уже обо всех других ваших компонентах Пк. И они будут хуже работать.

Для небольших сборки тех, у кого нет достаточного воздушного потока, референсное турбинное охлаждение GPU может быть лучше для системы в целом. Ведь оно выталкивает горячий воздух за пределы корпуса,

Какое бывает воздушное охлаждение видеокарт — выводы:

Для большинства потребителей, разницы между 2 типами охладителей минимальны. Меньше чем 5 градусов разница между ними. Что обычно не достаточно для того чтобы вызвать более низкую производительность. И, конечно же, геймеры, желающие более точно управлять своим внутренним воздушным потоком, могут установить водяное охлаждение. Которое в любом случае вытесняет воздух через радиатор. Если у вас нет особых проблем с потоком воздуха внутри ПК. То какую систему выбрать по сути и не так важно.

Если вы взяли меньший корпус или планируете использовать жидкостное охлаждение на своем процессоре. То тут вопрос скорее к дизайну кулера вентилятора GPU ? Это если карты сопоставимы в других отношениях. Если вы планируете разгонять графический процессор и хотите добиться максимальной производительности в большом корпусе. То выберите охлаждение с открытыми вентиляторами. на этом все, спасибо за внимание.

Источник

Коротко о типах охлаждения для видеокарт. Их особенности, приемущества и недостатки

Дисклеймер: данный автор не считает себя убежденным профессионалом и является профаном во многих темах. Не стоит слепо прислушиваться к мнению автора! Все, что будет здесь рассказано, основано на отобранной информации и личном опыте.

Категорически приветствую!
В основном, при выборе видеокарты, многие пользователи упускают такой пункт как система охлаждения, от чего могут сильно пожалеть. За это их конечно винить не стоит, ведь не каждый понимает в компьютерном железе. Да и зачем разбираться, ведь не для каждого это будет интересным занятием, а если надо, то в этом смогут помочь посторонние.

В сегодняшней статье будет рассказано о типах охлаждения и для каких случаев они предназначены.

Сегодня доступно довольно солидное число видеокарт с различными видами охлаждения. К каждой модели видеокарты система охлаждения разработана индивидуально, в зависимости от форм-фактора, теплопакета и дизайна платы. Поэтому у каждого производителя эффективность охлаждения разнится.
Типов охлаждения четыре: пассивное, активное турбинное, активное вентиляторное, активное жидкостное.

Пассивное охлаждение.

Используется в двух случаях: для энергоэффективных (заведомо "холодных") видеокарт, а также для бесперебойной и тихой работы внутри дата-центров.

Плюсом такого решения можно считать полное отсутствие какого-либо шума от устройства и исключение износа движущихся элементов. Это полезно как для любителей тихих ПК, так и для крупных серверов, где не будет издаваться лишнего гула, а также отсутствует риск поломки вентиляторов от износа.

Минусов такого решения сразу несколько. Самое главное это высокие требования видеокарт к теплопакету, отчего эффективность пассивного охлаждения напрямую зависит от используемого материала и размера (массивности). Энергоэффективные видеокарты способны работать и с простым бруском алюминия, в то время как производительные видеокарты требуют куда большого внимания к дизайну радиатора, даже в условиях интенсивной продуваемости. Массивный радиатор куда эффективнее работает для более горячих карт, однако это способствует увеличению массы и размера, что может оказаться критичным. Поэтому для "горячих" карт используют вентиляторы, для дополнительного рассеивания тепла.

Турбинное охлаждение.

Данный тип охлаждения уже относится к активному охлаждению. Конструкция данного решения достаточно проста: центробежный вентилятор нагоняет весь воздух внутрь видеокарты и через радиатор выбрасывает его из корпуса компьютера через собственный вырез. Такое решение больше подходит для корпусов малого форм-фактора.

Источник

Видеокарта с одним вентилятором как называется

Видеокарты имеют собственный процессор – графический процессор(GPU), специализированный для обработки графики. Такой процессор работает на более низких частотах, в сравнении с CPU, но обладает большим количеством ядер. Используя сотни ядер, GPU обрабатывает множество параллельных вычислений для тысяч пикселей, создавая сложную 3D графику. Частота современных GPU измеряется мегагерцами и варьируется в районе 1500Mhz.

На сегодняшний день есть несколько производителей GPU: nVidia, AMD и Matrox, к выходу на рынок готовятся видеокарты с GPU от Intel.

Память

Современные видеокарты используют память GDDR (Graphics Double Data Rate). Общими отличиями GDDR от DDR являются более высокие номинальные частоты работы первой. Также GDDR содержит упрощения электрического интерфейса и применение ряда специальных приёмов управления буфером ввода-вывода, что позволяет достичь несколько бо́льшей пропускной способности и более высоких рабочих частот по сравнению с DDR SDRAM. Кроме этого, GDDR имеет по сравнению с DDR более низкое энергопотребление и тепловыделение при работе на равных частотах.

Персональные компьютеры используют в качестве ОЗУ DDR четвертого поколение, с частотой памяти немного более 4Ghz, видеокарты используют GDDR шестого поколения, с частотой свыше 15Ghz.

Память видеокарты соединена с GPU, этот канал называется шиной памяти. Ширина этого канала влияет на производительность видеокарты, так как влияет на пропускную способность памяти, т.е. количество данных, которые видеокарта способна обработать за единицу времени. За редким исключением, разрядность шины варьируется от 64 до 512 бит, чем больше, тем лучше. Чтобы вычислить пропускную способность можно использовать формулу: разрядность шины (байт), например (512 бит/8), умножить на частоту памяти (Mhz), например 10000Mhz = 640GB/s.

Читайте также:  Вентилятор noctua nf a12x25 flx

Объем памяти современных видеокарт варьируется от 1Гб до 48ГБ. В профессиональных решения встречается ECC память, о которой было упоминание в ЛикБезе про память.

Интерфейс

Видеокарты используют интерфейс PCI-e через разъем PCI-e x16. Видеокарта может использовать все 16 линий PCI-е, c пропускной способностью 8GB/s на линию. Если в системе используется более одной видеокарты, то каждая видеокарта может получить только 8 или 4 линии PCI-e, в зависимости от деления линий CPU. Об этом было упоминание в ЛикБезе про процессоры и материнские платы.

Блоки и процессоры

Ранее в видеокартах использовались пиксельные процессоры, которые рассчитывали цвет пикселя, выполняя программу пиксельного шейдера, и вершинные процессоры, которые рассчитывали геометрическую структуру, выполняя программы вершинного шейдера. Сейчас в видеокартах используются универсальные процессоры, которых может насчитываться несколько тысяч. Их количество влияет на общую производительность видеокарты. Шейдер — компьютерная программа, предназначенная для исполнения процессорами видеокарты (GPU).

Текстурные блоки (TMU, Texture Mapping Unit) отвечают за выборку и фильтрацию текстур, а также за наложение текстур на поверхности геометрических объектов.

Блоки растеризации (ROP, Raster Operator) отвечают за финальный этап обработки изображения (сглаживание, блендинг, работу с буфером глубины), а также за запись обработанного изображения в буфер кадра видеокарты.

API для GPU

DirectX — это набор API, разработанных для решения задач, связанных с программированием под Microsoft Windows. Наиболее широко используется при написании компьютерных игр. Современные видеокарты поддерживают DirectX 12. Версия DirectX определяет качество изображение, оптимизацию ресурсов и поддержку новых технологий, например, трассировку лучей.

Vulkan — кроссплатформенный API для 2D- и 3D-графики, впервые представленный Khronos Group в рамках конференции GDC 2015. Изначально был известен как «новое поколение OpenGL» (Open Graphics Library).Как и OpenGL, Vulkan позволяет с высокой производительностью отображать в реальном времени различные приложения с 3D-графикой, такие как игры или интерактивные книги на всех платформах, а также обеспечивает более высокую производительность и меньшую нагрузку на процессор.

Трассировка лучей

Ray tracing; рейтрейсинг, трассировка лучей — технология построения изображения трёхмерных моделей в компьютерных программах, при которых отслеживается обратная траектория распространения луча (от экрана к источнику), используется для создания реалистичного освещения, отражений и теней, обеспечивающее более высокий уровень реализма по сравнению с традиционными способами рендеринга. С выходном поколения видеокарт nVidia RTX, трассировка лучей обрела популярность, так как производители игр стали осваивать эту технологию.

Видеоинтерфейсы

VGA, D-subminiature или D-sub DE-15 – аналоговый электрический разъем.

Digital Visual Interface, DVI «цифровой видеоинтерфейс» — стандарт на интерфейс, предназначенный для передачи видеоизображения на цифровые устройства отображения.

Существуют версии разъема DVI:
— DVI-A Single Link (A — Analog, аналоговый) — только аналоговая передача;
— DVI-I (I — Integrated, совмещенный) — аналоговая и цифровая передача;
— DVI-D (D — Digital, цифровой) — только цифровая передача.

HDMI — High Definition Multimedia Interface — интерфейс для мультимедиа высокой чёткости, позволяющий передавать цифровые видеоданные высокого разрешения и многоканальные цифровые аудиосигналы с защитой от копирования (HDCP).

Последняя версия – 2.1, имеет пропускную способность 48 Гбит/с, разрешение до 10к при 120гц, 32 аудиоканалов. Существуют 3 версии разъема данного интерфейса – HDMI miсroHDM и miniHDMI.

DisplayPort — стандарт сигнального интерфейса для цифровых мониторов.

Последняя версия – 2.0, имеет пропускную способность 77,4 Гбит/с, разрешение до 16к при 60гц. Поддерживает 144гц при разрешении 4к. Существует 2 разъема интерфейса: DP и miniDP.

miniDP програмно-аппаратно совместим c Thunderbolt, но это не одно и то же.

Мощность, питание и TDP

Простым видеокартам достаточно питания через разъем PCI-e, но мощные видеокарты требуют дополнительного питания от блока питания через разъемы 6 или 8 pin PCI-e, о которых упоминалось в ликбезе про блоки питания. Самые мощные видеокарты могут потреблять сотни Вт, и выделять сотни Вт тепла. Это необходимо учитывать при конфигурировании компьютера.

Охлаждение

Современные видеокарты могут обладать 3 типами охлаждения:
— Простые и игровые видеокарты начального уровня встречаются с пассивным охлаждением;
— Стандартным считается активное воздушное охлаждение из одного, двух или трех вентиляторов в ряд, иногда бывают дополнительный вентилятор на верхней кромке;
— Производительные видеокарты встречаются с системой водяного охлаждения, что позволяет эффективно охлаждать несколько видеокарт.

Видеокарты nVidia работают в бесшумном режиме при температуре ниже 55 градусов Цельсия, отключая вентиляторы. Также мощные видеокарты nVidia очень быстро набирают максимально допустимую температуру и работают не на полной мощности, при недостаточном охлаждении. Это важно для рабочих станций под рендер видео.

Форм-фактор

Видеокарты исполняются в виде плат расширения, которые различаются по 3 параметрам:

— Количество занимаемых слотов, от 1 до 3;

— Полная высота или низкопрофильная;

Эти параметры важны для возможности размещения видеокарты в корпусе.

SLI и Crossfire

У nVidia (SLI) и AMD (Crossfire) есть технология масштабирования мощности, позволяющая использовать несколько видеокарт для обработки трёхмерного изображения в одной системе. В зависимости от модели видеокарт технология поддерживает две, три или четыре видеокарты.

Для реализации SLI требуется специальный мост, современные видеокарты nVidia поддерживают высокопроизводительные мосты объединяющие 2 видеокарты. Размер моста требуется подобрать согласно размещению видеокарт относительно друг друга при подключении к материнской плате. AMD отказались от мостов для Crossfire.

Существует 3 основных алгоритма работы:
— Split Frame Rendering в SLI, Scissor в Crossfire (раздельный рендеринг кадра) – обработка кадра делится поровну между всеми видеокартами в системе, то есть каждая видеокарта обрабатывает половину изображения.
— Alternate Frame Rendering (чередующийся рендеринг кадра) – видеокарты обрабатывают кадры по очереди.
— SLI AA в SLI, SuperAA в Crossfire — Одна и та же картинка генерируется на всех видеокартах с разными шаблонами сглаживания, чем достигается максимальные чёткость и детализованность изображения.

Наличие второй и далее видеокарт не дает 100% прироста к производительности, тесты в разных играх показывают разные результаты увеличения FPS. Для использования нескольких видеокарт требуется более мощное питание и охлаждение. Целесообразно использовать данную технологию при недостатке мощности для выполнения задачи у самой топовой видеокарте (не Титан).

«144гц»

У nVidia и AMD есть собственные стандарты для мониторов, адаптирующие их к частоте кадров, называются g-sync и freesync соответственно. Технология позволяет улучшить качество динамических сцен. Технология Freesync бесплатна, мониторы, поддерживающие ее, стоят дешевле, и с недавних пор nVidia добавила поддержку этого стандарта и в свои видеокарты.

Об этом стоит подробнее написать в материале про мониторы.

Поддерживаемые мониторы

Современные игровые видеокарты от nVidia и AMD поддерживают до 6 мониторов, при этом третий и далее мониторы должны быть подключены исключительно через DisplayPort. А профессиональные решения поддерживают до 8 мониторов на 1 слотовой видеокарте, например,nVidia Quadro NVS 810. У видеокарты есть максимальное разрешение, все подключенные мониторы не могут суммарно превышать это значение. Например, мы на nVidia Quadro NVS 810 можем подключить лишь 1 монитор 4к, или 4 монитора в FullHD, или 8 мониторов в более низком разрешении. Увеличить количество поддерживаемых мониторов возможно путем установки большого количества видеокарт без использования режимов SLI и Crossfire. Современные игровые видеокарты способны выводить разрешение 8К на 1 экран, или 4К на 4 экрана. Только данная способность не означает то, что в таком разрешении видеокарта будет производительной, и для, например, игры в 8К потребуется несколько видеокарт в SLI или Crossfire.

Профессиональные решения

Про профессиональные решения можно выводить отдельные ветви статей, если бегло пройтись по основным направлениям nVidia:

Видеокарты nVidia Quadro — бренд графических карт фирмы NVIDIA, предназначенный для профессионального использования в рабочих станциях САПР, станциях компьютерной графики и создания цифрового контента. Отличаются большей мощность графического процессора и большим объемом памяти.

Сопроцессоры nVidia Tesla — семейство вычислительных систем NVIDIA на основе графических процессоров с архитектурой CUDA, которые могут быть использованы для научных и технических вычислений общего назначения. Для серверных решений существует интерфейс — c NVLink с пропускной способностью 1,6Tb/s, при котором графические вычислительные модули располагаются на плате, подобно CPU.

Сопроцессоры NVIDIA GRID — это решения для виртуализации, обеспечивающие пользовательские возможности почти на уровне физического ПК. Простыми словами, это возможность использования в частном облаке вычислительной мощности, сравнимой с несколькими топовоми видеокартами, например, на планшете.

Источник

Adblock
detector